Effects of Multiple Metal Binding Sites on Calcium and Magnesium-dependent Activation of BK Channels

نویسندگان

  • Lei Hu
  • Huanghe Yang
  • Jingyi Shi
  • Jianmin Cui
چکیده

BK channels are activated by physiological concentrations of intracellular Ca2+ and Mg2+ in a variety of cells. Previous studies have identified two sites important for high-affinity Ca2+ sensing between [Ca2+]i of 0.1-100 microM and a site important for Mg2+ sensing between [Mg2+]i of 0.1-10 mM. BK channels can be also activated by Ca2+ and Mg2+ at concentrations>10 mM so that the steady-state conductance and voltage (G-V) relation continuously shifts to more negative voltage ranges when [Mg2+]i increases from 0.1-100 mM. We demonstrate that a novel site is responsible for metal sensing at concentrations>=10 mM, and all four sites affect channel activation independently. As a result, the contributions of these sites to channel activation are complex, depending on the combination of Ca2+ and Mg2+ concentrations. Here we examined the effects of each of these sites on Ca2+ and Mg2+-dependent activation and the data are consistent with the suggestion that these sites are responsible for metal binding. We provide an allosteric model for quantitative estimation of the contributions that each of these putative binding sites makes to channel activation at any [Ca2+]i and [Mg2+]i.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Mg2+ Enhances the Function of Bk-Type Ca2+-Activated K+ Channels

BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 cha...

متن کامل

Allosteric Regulation of Bk Channel Gating by Ca2+ and Mg2+ through a Nonselective, Low Affinity Divalent Cation Site

The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-acti...

متن کامل

-activated K Channels

BK channels modulate neurotransmitter release due to their activation by voltage and Ca 2 . Intracellular Mg 2 also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg 2 blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel....

متن کامل

Metal ions binding study on human growth hormone by isothermal titration calorimetric method

The interaction of hGH with some metal ions ( ) at 27°C in NaC1 solution, 50 mM was studied using Isothermal titration calorimetry. There is a set of three identical and non-interacting binding sites for binding of all these metal ions, expect . The intrinsic association equilibrium constants () are not very different for  and , and also their molar enthalpies of binding (KJ/mol for  and  KJ/mo...

متن کامل

Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.

Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2006